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The research questions & method

• Can you exploit the joint time-series behaviour of these
variables to look at credit risk?

=⇒ Let both default probabilities and recovery rate distributions
be driven by an unobserved factor (Markov chain).

• How bad is it to treat recovery rates as constant?
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Related literature

• Default probabilities vary with the cycle.
(Bangia et al. (2002), Nickell et al. (2000))

• Recovery rates ↑ =⇒ default probabilities ↓
(Altman et al. 2006, Acharya et al. 2007)
Is the amplification effect of recovery rates large?

• Recovery rates and default probabilities can be modelled as
functions of observed covariates.
(Chava et al. 2008)

• Theory:

• Recovery rates should be related to the state of the industry:
Shleifer and Vishny (1992).

• RBC and credit: Bernanke and Gertler (1989), Williamson
(1987)
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Summary of results

• Credit variables are more tightly related to each other
contemporaneously and over time than to macro variables.

• “Credit cycle” 6= business cycle.

=⇒ latent factor approach works well, and better than many
models based on observed covariates.

What happens if you allow for time-varying recovery rate
distributions? You get

• slightly higher estimates of tail risk,
(the 99% VaR e.g. 3.3% → 3.4%, or 3.4% → 3.7%.)

• and practically the same expected losses.

=⇒ The behaviour of recovery rates has a amplifying effect, but
smaller than previously suggested.

Caveats?
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The basic idea

The DGP works as follows:

• The state of the credit cycle is determined by a two-state
Markov chain.

• The number of defaulting firms is drawn using the
state-dependent default probability.

• For each defaulting firm, we draw a recovery rate from the
state-dependent recovery rate distribution.

Dependence:

• Conditional on the state, defaults are independent, recoveries
between firms are independent, and the number of defaulting
firms and recoveries are independent.

• As a consequence, (unconditional) dependence is driven
entirely by the (unobserved) state of the credit cycle.
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Specific assumptions about functional forms

• Conditional on the state of the cycle, default arrival is
described by discrete hazards of the form

λt = (1 + exp {γ0 + γ1ct + γ2Xt})−1 .

(t: time, ct: cycle, Xt: economy-wide variables)

• Recoveries for each default event are drawn from a beta
distribution.

• The parameters of this beta distribution are given by:

αti = exp {δ0 + δ1ct + · · ·+ δ6Xt} (1)

βti = exp {ζ0 + ζ1ct + · · ·+ ζ6Xt} (2)

(t: time, i: firm)
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Estimation

• The model can be easily be estimated using a version of the
Hamilton filter (MLE).

• For this we need the number of defaulting firms, and
non-defaulting firms in each period, and a recovery rate for
each default event.
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Data sources

We use data from two main sources,

• the Altman-NYU Salomon Center Corporate Bond Default
Master Database, consisting of prices just after default of
more than 2,000 bonds of US firms from 1974 to 2005, with
issuers and dates, and a “bond category”,

• and Moody’s annual bond issuer default rates.

Assuming that both the Altman data and Moody’s data track the
same set of firms, we can obtain the number of non-defaulting
firms in each year by dividing Altman’s number of defaulting firms
by the Moody’s default rate.

• We augment this with GDP growth, investment growth,
unemployment, the S&P 500 index, the VIX, the slope of the
term structure, and an NBER recession indicator.
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Macro variables versus the business cycle

Model 1 Model 2 Model 3 Model 4
Explanatory variables for λ (default probability)

constant constant constant constant
cycle log GDP growth cycle

log GDP growth
Explanatory variables for α,β (recovery rates)

constant constant constant constant
cycle log GDP growth cycle

log GDP growth
seniority seniority seniority seniority

AIC -20.43 -309.18 -86.45 -314.26
BIC 0.0681 -0.1465 0.0213 -0.1255

=⇒ Macro variables are significant, but do not contribute much
to the fit.
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Is the business cycle = credit cycle?
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• The estimated credit downturns start earlier than NBER
recessions, and end later.

• We investigate lead-lag relationships between macro variables
and credit variables and find that recovery rates Granger cause
log GDP growth (very significant!).
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VaR Simulation (variation in RR and PD)
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VaR Simulation (variation in RR and PD)
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Introduction The Model Data Some estimation results Implications for risk management Conclusion

VaR Simulation (variation in RR and PD)

0.00 0.01 0.02 0.03 0.04 0.05

0
20

40
60

80
10

0
12

0

Loss fraction

D
en

si
ty

Recovery Rates, Default Probabilities, and the Credit Cycle Max Bruche and Carlos González-Aguado
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Introduction The Model Data Some estimation results Implications for risk management Conclusion

VaR Simulation (variation in RR and PD)

0.00 0.01 0.02 0.03 0.04 0.05

0
20

40
60

80
10

0
12

0

Loss fraction

D
en

si
ty

Recovery Rates, Default Probabilities, and the Credit Cycle Max Bruche and Carlos González-Aguado
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VaR Simulation (variation in PD only)
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VaR Simulation (variation in PD only)
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VaR Simulation (variation in RR only)
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Expected Loss
Expected loss is not affected

• Suppose
PD|E = 2% L|E = 30%
PD|R = 10% L|R = 70%
P (E) = 1/2 =⇒ E[L] = 50%, E[PD] = 6%.
Therefore

E[L · PD] = .5× 30%× 0.02 + .5× 70%× 0.1 = 3.8%
E[L] · E[PD] = 3%

=⇒ E[L · PD]− E[L] · E[PD] = 80bp

i.e. expected loss can be bigger if PD and L covary.

• We could calculate the increase in expected loss from our
model, but note that
E[L · PD]− E[L]E[PD] = Cov(L,PD).

• In our data, Cov(L̄, dfr) = 6bp.
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Some conclusions

• We propose an econometric model in which default rates and
recovery rates are driven by an unobserved Markov chain.

• This describes the data well, and does better than many
models based on observed covariates.

• In particular, macro variables are significant, but don’t help
much in matching variation in credit risk.

We can use the estimated model to look at what happens when we
go from constant to time-varying recovery rate distributions. We
get

• slightly higher estimates of tail risk,

• but practically the same expected losses.
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