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Abstract
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1. Introduction

In much of the continuous-time debt pricing literature, it has typically been assumed
that default is tantamount to liquidation. In the models of Leland (1994) and Leland and
Toft (1996), for example, equityholders choose a boundary at which they will default,
knowing that once they do so, the firm is immediately liquidated.

In practice most of the companies which default go into a period of reorganization
and may or may not be liquidated.1 Using US data, Gilson et al. (1990) find that in their
sample only about 5% of the bankruptcies in Chapter 11 are converted into Chapter 7
liquidations. Using data on distressed UK companies, Franks and Sussman (2005) find
no evidence of automatic liquidation upon default.

Recently, some debt pricing models have therefore attempted to separate the notions
of default and liquidation. For instance, in the model by François and Morellec (2004),
default is triggered by the equityholders but the company is liquidated only once the
consecutive time spent in default exceeds an exogenous grace period. Similarly, in the
model of Moraux (2002) liquidation occurs when the cumulative time spent in default
exceeds an exogenous grace period, and in the model of Galai et al. (2007), liquidation
occurs when consecutive time in distress, weighted by distress severity exceeds an ex-
ogenous threshold.2 In all of these papers, default is determined by equityholders but
liquidation is triggered by an exogenous criterion which is meant to capture the Court’s
behavior under Chapter 11.

This paper contributes to this literature by considering an alternative, endogenous
mechanism for liquidation, which is more representative of creditor-friendly bankruptcy
regimes or secured debt: Once equityholders have defaulted, debt covenants are trig-
gered, which give debtholders the option to liquidate the firm. In our setup, debtholders
do not liquidate the firm immediately upon default but are willing to accept reduced
coupon payments (i.e. some default on coupon payments) in the hope that the firm’s
fundamentals will improve. If the firm’s fundamentals deteriorate, however, debthold-
ers eventually liquidate. The point at which equityholders default furthermore affects
the incentives to liquidate; the earlier equityholders default, the lower the continuation
value to debtholders, and hence the earlier they will want to liquidate. Equityholders,
when choosing when to default, take into account how their default decision affects the
liquidation decision of debtholders.

This produces very different implications for the timing of liquidation—as opposed
to models with an exogenous grace period, the time of liquidation can be very soon
after default if firm fundamentals deteriorate sufficiently, or very long after default if
firm fundamentals are bad but stable for a long time. In our model, the time between
the initial default and subsequent liquidation will be random, and not related to a grace
period.

Also, it implies that debtholders have incentives to liquidate too early, and equity-
holders have incentives to default too early, which affects debt values and optimal capital

1The time spent in the reorganization period varies immensely. Franks and Torous (1989) report that
in their sample, firms on average spend a period of 4 years in Chapter 11.

2In a slightly more general version of this approach, Broadie et al. (2007) posit that a firm is liquidated
either once the consecutive time spent in default exceeds an exogenous grace period, or once the asset
value hits a boundary chosen by equityholders.
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structures. Firstly, debtholders typically get all of the liquidation value but only a part
of the upside to all claimants if the firm’s situation improves. They therefore have in-
centives to liquidate early, decreasing firm value. Secondly, equityholders anticipate that
debtholders will not liquidate immediately upon default. They therefore have incentives
to default earlier than they would otherwise. If there is a cost associated with default/ fi-
nancial distress, this cost is then more likely to be incurred, decreasing firm value. Both
effects produce an agency cost, whose size is also affected by the interaction between
the two decisions. We show in a numerical example how this can lead to lower optimal
leverage and higher spreads.

Relative to the above-mentioned literature that considers liquidation as a result of
exogenous grace periods, our model is a better representation of an environment where
debtholders have a strong influence over the timing of liquidation, like in the case of
secured debt, or creditor-friendly bankruptcy regimes. For instance, in the UK most
banks hold a floating charge over the assets of a company and if the firm is unable to
meet its obligations then the banks have the power to appoint an administrative receiver
who then supervises the running of the firm and who has the power to put the company
into liquidation.3 The UK Bankruptcy Code closely resembles the South African “judicial
management” and the Australian “official management” and gives relatively more powers
to the creditors vis-a-vis the US Chapter 11.

Our model is also related to the work of Mella-Barral (1999). In his setup, debthold-
ers also do not liquidate immediately upon default but are willing to accept reduced
coupon payments (i.e. some default on coupon payments) in the hope that the firm’s
fundamentals will improve. However, in his model whenever a default occurs new debt
contracts are drawn up until the firm is eventually liquidated. In contrast, in our model,
although debt contracts are temporarily violated when equityholders default on coupon
payments, they are not renegotiated or replaced. (This is consistent with the US Trust
Indenture Act of 1939 which prohibits firms from permanently changing the ‘core’ terms
of bond indentures, which include the principal amount, the interest rate and the stated
maturity, unless all the creditors agree unanimously.4)

The rest of the paper is organized as follows. Section 2 sets up the model. Section
3 reports the analytical solutions for the values of equity, debt, and the firm, taking
the default and bankruptcy boundaries as given. Section 4 characterizes and discusses
the optimal default and liquidation boundaries chosen by equityholders and debtholders
respectively. Section 5 studies the implications of the model in the context of a numerical
example. Section 6 concludes.

3There is at least anecdotal evidence that as a result of debtholders being able to enforce liquidation
in the UK, there are instances of premature liquidation. For example, Woolridge (1987) reports that
floating charge holders “apply themselves ruthlessly to the realization of assets to satisfy the charge. . . in
some cases with scant regard for the future of the company”, or Hart (1995, p. 168) argues that “the
bank may decide against keeping a good company going because it does not see the upside potential.”

4If the firm goes to Chapter 11, then these core terms can be altered if a two-thirds majority by
value and a simple majority by number is reached within each class of creditors. However unanimity is
required outside of Chapter 11.
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2. The Model

A firm has access to a production process which produces a stochastic cash flow x
with two inputs: the human capital of a penniless manager, and a (physical) productive
asset. Financiers set up a firm to become equityholders: they purchase the productive
asset, hire a manager,5 and finance part of the initial outlay by issuing perpetual debt6

with a promised coupon payment of b > 0 per period, and part of it with their own
wealth.7 All potential managers have many outside job opportunities all paying a flow of
a > 0, and therefore the manager needs to be paid a salary flow of a per instant of time.
The manager’s human capital can be interpreted as a technical skill which is valuable to
the firm and without which the firm cannot be run. Hence if the manager’s wage income
is not paid, she leaves the firm and the firm produces no cash flow.

We suppose that capital markets are frictionless and that there are no informational
asymmetries between agents. Interest rates are non-stochastic and flat at r.8

Once a firm is operational, equityholders can decide whether or not to default on
coupon payments. When equityholders do not default on coupon payments, they receive
residual cash flows gross of taxes of x− (a+ b), on which they are liable to pay taxes at a
tax rate of τ per period, where τ ∈ (0, 1). Thus, the residual cash flows to equityholders
net of taxes are given by (1− τ)(x− (a+ b)).9 The payoff to the equityholders might be
negative if the fundamental cash flow x is too low to cover both coupon payments and
the salary of the manager.

When equityholders default on coupon payments, the fundamental cash flow is re-
duced to θx, where θ ∈ (0, 1) reflects the cost of financial distress. In default, debtholders
receive the residual cash flows θx−a, where θx−a < b whilst equityholders receive noth-
ing. Once a default occurs, debt covenants are triggered which gives debtholders the
right to liquidate. This put option to liquidate may or may not be exercised by the
debtholders.10

5We do not model principal-agent problems between the equityholders and the manager in this paper.
Recently some continuous time pricing models have focused on managerial related agency problems. See,
for instance, DeMarzo and Sannikov (2006) and Morellec and Smith (2007).

6For simplicity we assume that debt is perpetual. For an analysis of the effect of maturity on debt
pricing, see, for instance, Dumitrescu (2007) and Leland and Toft (1996).

7As is commonly supposed in the literature we assume that the equityholders do not hold any debt
in the firm. Realdon (2007) develops a structural valuation model when the equityholders are also
debtholders and shows that equityholders expropriate other debtholders by repaying their own credit
before bankruptcy.

8Longstaff and Schwartz (1995) develop a simple model of debt pricing in which they drop the usual
assumption of non-stochastic interest rates. However, like most other papers in the literature the focus
of this paper is on default risk and hence we assume that interest rates are constant.

9In the model, cash flows to debtholders are not taxed; τ should therefore be interpreted as a net tax
advantage to debt in the sense of Miller (1977).

10Note that given this setup the equityholders will not have an incentive to default on coupon payments
as long as the cash flows are sufficient to service debt. This is in contrast to the strategic debt servicing
models of Anderson and Sundaresan (1996) and Mella-Barral and Perraudin (1997). In their models,
equityholders default even at high cash flows to the extent that the payoff to the debtholders is just
sufficient such that they do not have an incentive to liquidate the firm. This strategic debt service
will not happen here because we require that equityholders cannot pay themselves a dividend when
defaulting.

As argued by Jensen (1986), one motivation for issuing debt is to commit the managers of the firm to
pay out future cash flows. However for such an objective to be effective there has to be some punishment
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In the event of liquidation the manager is fired, and the physical capital is sold for
total proceeds of K. We assume that 0 < K < b

r , and that absolute priority is respected
in liquidation, such that all of the liquidation proceeds go to debtholders. Since the
liquidation payoff to debtholders is less than b

r , debt will be risky.
Although for the main part of the paper we treat K as constant, the analysis can be

generalized to a situation in which K is a function of x, as long as this function satisfies
some conditions. Basically, these conditions boil down to requiring that in the case of an
unlevered firm, there can be situations in which the going-concern value is so low that
the firm is better off being liquidated and the remaining assets diverted to other uses,
i.e. liquidation is optimal for a low enough firm value. It turns out that if this holds
for an unlevered firm, it also holds for a levered firm. For our purposes, since we want
to be able to discuss optimal versus suboptimal liquidation boundaries, we impose these
conditions. Since a constant K is the simplest example for which these conditions are
satisfied, this is the case which we treat in the main text. A full discussion of the case
where K is a function of x is relegated to Appendix D.

The cash flows x follow a geometric Brownian motion under the pricing measure
defined by the money market account, i.e.

dx(t) = µx(t)dt+ σx(t)dW̃ (t), (1)

where the parameters µ and σ represent the drift and volatility terms respectively and
dW̃ (t) is the increment of a Brownian motion under the pricing measure.

Since debt and equity are perpetual claims, the optimal decision to default and the
optimal decision to liquidate can be expressed in terms of optimally chosen constant
boundaries for the cash flow at which equityholders default and debtholders liquidate.
We let x̂ denote the critical boundary at which equityholders choose to default, and x̄
denote the critical boundary at which debtholders choose to liquidate. Equityholders will
choose x̂ to maximize the value of equity. They choose first, taking into account the effect
that their choice of x̂ has on the choice of liquidation boundary x̄ by the debtholders (i.e.
they act as Stackelberg leaders). Debtholders choose x̄ to maximize the value of debt,
taking x̂ as given.

3. Valuation

In this section, we discuss the value of equity, debt, and the firm.

3.1. The value of equity
Equity is a perpetual claim to the cash flows (1 − τ)(x − a − b) outside of default,

and 0 in default, until the firm is liquidated. The liquidation payoff to equity is zero. A
standard pricing argument (requiring discounted gains processes to be martingales under
the pricing measure Q) produces a pricing ordinary differential equation (ODE).

if the commitment is not fulfilled. This punishment can take various forms. In our model it is the shift
of the control rights that gives force to this commitment. Hart and Moore (1998) show that such a
characteristic of a debt contract which gives the lender the right to seize and liquidate the project upon
default is useful in persuading entrepreneurs to pay out cash flows rather than diverting them.
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The equity value E(x) solves the following ODE:

1
2
σ2x2E′′(x) + µxE′(x)− rE(x) + e(x) = 0 (2)

where

e(x) =
{

(1− τ)(x− (a+ b)) if x ≥ x̂ Region 1: no-default
0 if x < x̂ Region 2: default (3)

Let E1(x) be the value of equity in the no-default region, and E2(x) be the value of
equity in the default region. Then the value of equity will obey the following boundary
conditions:

lim
x→∞

E1 (x) = (1− τ)
(

x

r − µ
− a+ b

r

)
(4)

E1 (x̂) = E2 (x̂) (5)
E′1 (x̂) = E′2 (x̂) (6)
E2 (x̄) = 0 (7)

Eqns. (5) and (7) are obvious value-matching conditions. Eqn. (4) rules out bubbles,
and states that for very large cash flows, the firm should essentially be default-risk free.
Eqn. (6) states the value function should not change abruptly when the flow payoff
function changes. Dixit (1993) shows that this is a necessary condition for no arbitrage.
(See Karatzas and Shreve (1988) for a more rigorous discussion.)

Solving the differential equation (2) subject to the above boundary conditions we
obtain the following result.

Proposition 1. The value of equity in the no-default region is given by

E1(x; x̂, x̄) = (1−τ)
(

x

r − µ
− a+ b

r

)
+
[
E2(x̂; x̂, x̄)− (1− τ)

(
x̂

r − µ
− a+ b

r

)](x
x̂

)−γ
(8)

while the value of equity in the default region is given by

E2(x; x̂, x̄) = (1− τ)Z(x̂)
(x
x̂

)δ
+
[
0− (1− τ)Z(x̂)

( x̄
x̂

)δ](x
x̄

)−γ
(9)

where

Z(x̂) =
(1 + γ)
δ + γ

x̂

r − µ
− γ

δ + γ

a+ b

r
.

The powers δ and γ are the positive and negative roots respectively of the characteristic
quadratic equation ξ (ξ − 1)σ2/2 + ξµ − r = 0. Finally, for x < x̄ the value of equity is
0.

Proof. See Appendix A.

The value of equity in the no-default region, E1, can be interpreted as the value
of receiving the cash flows net of coupons and taxes (the first term of (8)), plus the
(negative) value of a claim that swaps this against E2 when the firm enters the default
region. The first term in (9) is the value of receiving positive cash flows in the event that
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the firm exits the default region. The second term swaps this value against 0 when x̄ is
hit and the firm is liquidated.

The solution of the equity function from Proposition 1 is illustrated in Figure 1.
Note that the value of equity is often positive even in the default region even though
the economic payoff to the equityholders in this region is zero. This is because as long
as the firm is not liquidated, there is always a positive probability that the firm might
exit default and hence the equity holders might be able to earn economic profits in the
future.

3.2. The value of debt
The debt value solves the following ODE

1
2
σ2x2B′′(x) + µxB′(x)− rB(x) + p(x) = 0 (10)

where

p(x) =
{
b for x ∈ [x̂,∞) Region 1: no-default
θx− a for x ∈ [x̄, x̂) Region 2: default (11)

The liquidation payoff to debtholders is K.
Let B1 be the value of debt in Region 1, and let B2 be the value of debt in Region

2. Then the value of corporate debt will satisfy the differential equation (10) subject to
the following boundary conditions

lim
x→∞

B1(x) =
b

r
(12)

B1(x̂) = B2(x̂) (13)
B′1(x̂) = B′2(x̂) (14)
B2(x̄) = K (15)

As before, (13) and (15) are obvious value-matching conditions. Eqn. (12) rules out
bubbles, and states that for very large cash flows, debt should essentially be default-risk
free. Analogous to the equity pricing case, (14) rules out arbitrage opportunities.

Solving the differential equation (10) given the boundary conditions just described
yields the following result.

Proposition 2. The value of debt in the no-default region is given by

B1(x; x̂, x̄) =
b

r
+
(
B2(x̂; x̂, x̄)− b

r

)(x
x̂

)−γ
(16)

while the value of debt in the default region is given by

B2(x; x̂, x̄) =
θx

r − µ
− a

r
− Z(θx̂)

(x
x̂

)δ
+
[
K −

(
θx̄

r − µ
− a

r
− Z(θx̂)

( x̄
x̂

)δ)](x
x̄

)−γ
.

(17)
Finally, for x < x̄ the value of debt is K.

Proof. See Appendix A.

7



As before, these formulas can be interpreted in terms of claims that swap values for
other values when default and liquidation boundaries are hit.

The solution from Proposition 2 is depicted in Figure 1. Note that as is the usual
case, the value of debt is a concave function of the state variable in good states of the
world. However, in the default region the value of debt is a convex function of the state
variable reflecting the fact that the bondholders are in effect the residual claimants as
long as the firm remains in default.

3.3. The market value of the levered firm
Given the market price of equity and the market price of debt we can calculate the

market value of the levered firm, V , as the sum of the value of all outstanding claims.11

We define V1 as being equal to the market value of the levered firm in the no-default
region while V2 denotes the market value of the levered firm in default region. Since
V1 = E1 +B1 and V2 = E2 +B2 we have the following corollary to Propositions 1 and 2.

Corollary 1. The value of the levered firm in the no-default region is given by

V1(x; x̂), x̄) = (1− τ)
(

x

r − µ
− a

r

)
+ τ

b

r

+
[
V2(x̂; x̂, x̄)−

(
(1− τ)

(
x̂

r − µ
− a

r

)
+ τ

b

r

)](x
x̂

)−γ
(18)

while the value of the levered firm in the default region is given by

V2(x; x̂, x̄) =
θx

r − µ
− a

r
+ (Z(x̂)− Z(θx̂)− τZ(x̂))

(x
x̂

)δ
+
[
K −

(
θx̄

r − µ
− a

r
+ (Z(x̂)− Z(θx̂)− τZ(x̂))

( x̄
x̂

)δ)](x
x̄

)−γ
. (19)

In the no-default region, the market value of the levered firm is the post-tax value of
cash flows (net of manager salary), plus the value of the debt tax shield. The third term
represents the value of a claim that swaps this against the market value of the levered
firm in the default region, when x hits x̂.

In the default region, the market value of the levered firm is the value of receiving
the now untaxed cash flows, but subject to distress cost θ, net of manager salary (first
two terms), plus the value associated with receiving the higher cash flows (not subject
to distress cost) when x rises above x̂ (term in (Z(x̂)− Z(θx̂))

(
x
x̂

)δ), minus the value
associated with having to pay taxes again once x rises above x̂ (second term). The fourth
term represents the value of a claim that swaps this against K, when x hits x̄.

The valuation function of the levered firm is depicted in Figure 1.

11Note that the market value of the levered firm is not equal to the market value of an unlevered
firm because of taxes, potentially different liquidation boundaries, and financial distress costs, i.e. a
Modigliani-Miller style capital structure irrelevance result will not hold here.
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b/r

Values

E(x)

B(x)
V
L
(x)

Liquidation Default
x̂x

Figure 1: Values of debt, equity, and the firm

Values of debt (B(x), equity (E(x)), and the firm (V (x)) as a function of cash flow x.

4. Optimal default and liquidation

In this section, we discuss the optimal default and liquidation thresholds chosen by
equityholders and debtholders respectively. A natural point of comparison will turn out
to be the default boundary at which equityholders would choose to default if default
implied immediate liquidation as in Leland (1994).

4.1. Optimal default boundary chosen by equityholders
Suppose that the liquidation boundary x̄ is below the default boundary x̂, i.e. default

does not imply immediate liquidation. It can then be shown that equityholders will inject
some cash to delay default, but less so than in the case in which default implies immediate
liquidation.

Proposition 3. If default does not imply immediate liquidation, the default boundary
x̂∗ that maximizes the value of equity satisfies the following inequality

x† < x̂∗ < a+ b, (20)

where x† is the default boundary that maximizes the equity value for the case where default
leads to immediate liquidation.
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Proof. See Appendix C.2.

The optimal default boundary x̂∗ can be characterized via the appropriate first order
condition associated with maximizing the value of equity:

∂E(x; x̂, x̄)
∂x̂

+
∂E(x; x̂, x̄)

∂x̄

dx̄

dx̂
= 0. (21)

The first term in the above equation measures the direct effect of the choice of default
boundary x̂ on the value of equity while the second term measures the indirect effect
of the choice of default boundary x̂ on the liquidation boundary. The choice of de-
fault threshold affects the continuation value of debt and hence indirectly influences the
debtholders’ liquidation decision. Since equityholders are the Stackelberg leaders they
take into account the indirect effect of default timing on the liquidation threshold when
maximizing the value of equity.

Note that the default boundary directly affects equity value via its effect on cash
flows: Choosing a default boundary above a+ b means giving up the positive cash flows
x− (a+ b) for some x, because equityholders cannot receive dividends while the firm is
in default. On the other hand, choosing a default boundary below a + b means having
to make positive injections a+ b− x for some x. If we only consider these direct effects
on cash flows, the optimal default point would be given by x̂ = a+ b.

Furthermore, the default boundary indirectly affects equity value via affecting the
liquidation boundary chosen by debtholders, x̄∗B . (As it turns out, increasing the default
boundary x̂ increases the optimal liquidation boundary x̄∗B chosen by debtholders, see
Appendix C.1). This is because increasing the default boundary decreases the continua-
tion value to debtholders and vice versa.

If equityholders could indirectly choose the liquidation boundary x̄, which boundary
would they choose if they ignored the direct effect on the value of equity via cash flows?
This depends on whether the chosen default boundary x̂ is above or below x†given that
the equity value at x† smooth pastes to zero.12

If x̂ is above x†, then at the default boundary x̂, the equity value is positive. This
implies that the continuation value to equityholders is always positive in the default
region. Since the liquidation payoff to equityholders is zero, they would therefore prefer
a liquidation boundary as low as possible, i.e. the equity value would be decreasing in
the liquidation boundary.

On the other hand, if x̂ is below x†, then at the default boundary x̂, the equity
value is negative. This implies that the continuation value of equityholders is negative
in the default region. Since the liquidation payoff to equityholders is zero, they would
therefore prefer a liquidation boundary as high as possible, i.e. the equity value would
be increasing in the liquidation boundary.

Hence, if equityholders only consider the indirect effect of the default boundary on
the value of equity via the liquidation boundary, they would choose a default boundary
of x̂ = x†, as this would maximize the value of equity.

12To see this, note first that x† is the default boundary that would be chosen if default implied imme-
diate liquidation, via a first order condition, or equivalently, a smooth-pasting condition. Alternatively,
it can be derived as the x̂ that sets E2(x; x̂, x̄) to zero—since if the boundary payoff at x̂ to equity holders
is zero, condition (6) then imposes smooth pasting to zero. This implies that E2(x̂; x̂, x̄) is positive or
negative depending on whether x̂ is above or below x†.
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Given that there exists both a direct and an indirect effect, it follows that the optimal
default threshold would lie between x† and a + b. In other words the optimal default
threshold trades off the direct effect of the default boundary on equity via cash flows
with the indirect effect on the value of equity via the liquidation boundary.

Intuitively, if default leads to instantaneous liquidation then the default decision is
irreversible and hence it is optimal for equityholders to keep injecting liquidity until
equity is worthless. However, if the default decision is not irreversible and furthermore if
debtholders do not liquidate the firm immediately upon default but are willing to accept
residual cash flows which are less than the promised coupon payments, then this gives
an incentive to equityholders to default earlier.

4.2. Optimal liquidation boundary chosen by debtholders
It can be shown that the optimal liquidation boundary x̄∗B is below the default bound-

ary x̂, i.e. debtholders will tolerate some default before liquidating. The key assumption
that drives is result is that the liquidation payoff to debtholders K is less than b

r where
the latter represents the value of receiving the coupon payments b forever.

An intuitive argument for why this is the case is as follows: The liquidation payoff to
debtholders is K, so they will optimally liquidate once their continuation value falls to
K. Since b

r is the value of receiving the coupon b forever with probability 1, the contin-
uation value can never be below b

r unless debtholders tolerate some amount of default
before liquidating. If K < b

r , this necessarily implies that at the time of liquidation,
the continuation value of debtholders is below b

r , and that debtholders therefore must
have tolerated some default before liquidation. This result is formally summarized in
Proposition 4.

Proposition 4. For any given default boundary x̂, if K < b
r , the optimal liquidation

boundary x̄∗B that maximizes the value of debt falls below the default boundary x̂. The
optimal liquidation boundary x̄∗B is unique. It is given via an implicit function fB(x̄∗B) ≡
0.

Proof. See Appendix C.1.

4.3. Discussion
Unlike Leland (1994) where default is synonymous with liquidation, our model implies

that default does not lead to immediate liquidation. Liquidation in our model occurs
only when firm fundamentals fall sufficiently following a default by the equityholders.
In a setup where default implies instantaneous liquidation, equityholders would have an
incentive to inject relatively more liquidity compared to our setup in order to prevent
liquidation.

As discussed in the introduction, recently, a number of papers including that of e.g.
François and Morellec (2004) have modelled default in a setup where default does not
imply immediate liquidation. As is the case in our model, in these models, equityholders
inject less cash vis-a-vis the case of Leland (1994) and hence default occurs earlier. How-
ever, in these models the liquidation decision is determined exogenously.13 For instance,

13In the case of Broadie et al. (2007) liquidation may occur either because too much time is spent in
Chapter 11 bankruptcy or simply because because the firm value reaches the liquidation value.
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in François and Morellec (2004) the firm is liquidated if the time spent in default (an
observation period or grace period) exceeds an exogenously specified number of days.
Thus liquidation happens with a certain exogenous probability once the equityholders
default on the coupon payments. In contrast, in our model liquidation can happen at
any time after default, provided that the cash flow of the firm falls sufficiently.

Furthermore, in the model of François and Morellec (2004), an increase in the an-
ticipated length of the grace period reduces the probability of liquidation and hence
equityholders’ incentives to default earlier increases. However, in our model there is
a positive relation between the default threshold and the liquidation boundary. As dis-
cussed earlier, this is the case because an earlier default reduces the probability of exiting
default and thus lowers the continuation value of the debtholders. This in turn gives the
debtholders an incentive to liquidate earlier.14

Finally, it can be shown that the debtholders in our model have an incentive to
liquidate the firm prematurely relative to the liquidation boundary that maximizes firm
value, taking the default boundary as given. Since x̂∗ > x†, the equity value is positive in
the default region. However, the debtholders do not internalize the positive continuation
value of equity when choosing their liquidation timing. Debtholders realize that even
if the firm was restored to good health their upside would be limited by the level of
the coupon b. Hence the debtholders’ put option to liquidate is less valuable compared
to that of a stakeholder which had residual rights to the cash flows associated with all
claims on the firm in the no-default region. Debtholders therefore have an incentive to
liquidate prematurely. This is formally stated in the following Proposition.

Proposition 5. For a given x̂, there exists an optimal liquidation boundary x̄∗V that
maximizes the value of the levered firm that satisfies the following inequality

0 < x̄∗V < x̄∗B < x̂,

as long as x̂ > x†. The optimal x̄∗V is given via an implicit function fV (x̄∗V ) ≡ 0.

Proof. See Appendix C.3.

5. Numerical analysis

We next study the numerical implications that our model has for the default and
liquidation decisions, optimal capital structure and spreads. Regarding the choice of
parametric values we follow François and Morellec (2004) as far as is feasible. We set the
riskless interest rate to r = 6%, and the net tax advantage of debt to τ = 20%. Unless
stated otherwise, we set the salary cost a = 1, the coupon b = 5, and the liquidation value
K = 30. It can be shown that in our model, r−µ, plays the same role as the payout rate,
and that the post-tax value of cash flows net of salary costs, (1 − τ)

(
x
r−µ −

a
r

)
can be

interpreted as the going concern asset value. Since François and Morellec (2004) set the

14Notice that in the case of François and Morellec (2004) an exogenous probability of liquidation
determines the timing of default decision by the equityholders. In our model, equityholders when con-
templating default take into account the fact their default timing will affect the liquidation timing of
debtholders.
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payout rate to 5% and the current asset value to 100, we therefore set µ = 1%, and the
current cash flow x = 7.08. François and Morellec (2004) choose an asset value volatility
of 20% in their base scenario; for simplicity, we set σ = 20% (which corresponds to a
slightly higher volatility of the going concern asset value of around 23%). Finally, we
set θ = 0.7, which amounts to a 12.5% reduction of (post-tax) cash flows in financial
distress.

2.5 3.0 3.5 4.0 4.5 5.0

1.
6

1.
8

2.
0

2.
2

2.
4

x̂

x

Figure 2: Optimal default decision
The solid line is the optimal x̄∗B as a function of x̂, as chosen by debtholders. The dashed lines
are iso-equity-value curves. The tangency point, indicated by dotted lines, is the equity-value
maximizing choice of x̂ for shareholders, given that x̄∗B is determined by debtholders.

In Figure 2 we illustrate how the optimal default and liquidation boundaries are deter-
mined. On the horizontal axis, we have different values for the default boundary x̂ while
on the vertical axis, we have different values for the liquidation boundary x̄. The solid
line is the liquidation boundary x̄∗B(x̂) chosen by debtholders, taking the default bound-
ary x̂ as given. Note that the solid line is upward sloping implying a positive relationship
between default and liquidation thresholds. (In contrast, as discussed earlier, in the case
of François and Morellec (2004) the exogenous probability of liquidation determines the
default threshold chosen by equityholders.) The dashed lines depict combinations of the
default and liquidation boundaries for which the value of equity is constant (iso-equity-
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value lines). Equity value is increasing for lower liquidation boundaries, and increasing
for default boundaries closer to a+ b = 5 (where b = 4 in this example). The equityhold-
ers, acting as Stackelberg leaders, choose a default boundary x̂ (which implies a choice
of the liquidation boundary x̄∗B by the debtholders) that maximizes the value of equity;
i.e. they pick the point on x̄∗B(x̂) at which the iso-equity-value lines are just tangent to
the solid line. For the given numerical example, this point is at x̂∗ = 4.81, which implies
a liquidation boundary of x̄∗B = 2.28, as indicated in the figure.

Numerically, it is clear here that for the given parameters, the direct effect of x̂ on the
value of equity (via cash flows) is more important than the indirect effect (via changing
the liquidation boundary x̄∗B), producing a default boundary close to a + b rather than
close to x†. Here, because default does not imply immediate liquidation (in fact, the
distance between x̂∗ and x̄∗B is quite large), equityholders care more about not injecting
extra cash relative to liquidation timing.

For the given default and liquidation boundaries, leverage (defined as the proportion
of debt value in total firm value) is around 49.72%. The spread, defined as b/B − r, is
around 141 bp. The risk-neutral probability of hitting the default boundary within one
year is around 5.8%, while the market recovery, defined as the value of debt at default
as a fraction of face value (b/r) is around 66%. The risk-neutral probability of hitting
the liquidation boundary is virtually nil, reflecting the very large distance between the
default and the liquidation boundaries.1516

This raises the question as to what determines the distance between the default and
liquidation boundaries. A key determining feature here is the relationship between K,
the liquidation value, and b/r, the face value of debt. When b/r is small in relation to K,
debtholders have a strong incentive to liquidate early, which implies that equityholders
have a strong incentive to delay default, and the distance will be small. Conversely, when
b/r is large in relation to K, debtholders have a weak incentive to liquidate early, which
implies that equityholders have a weak incentive to delay default, and the distance will
be large. Taking into account both these effects we expect the distance between default
and liquidation to be decreasing in K − b/r and vice versa. This is illustrated in Figure
3, where we have kept K fixed at 30, but vary b.

As expected it can be seen from the Figure that the distance between the default
boundary (solid line) and the liquidation boundary (dashed line) is small when b is
small, tending to zero as b→ rK = 1.8. In the limit when K = b/r, debtholders liquidate
immediately upon default. This implies that equityholders will inject a lot of cash and
liquidate only when the cash flow reaches x† = 2.5. Conversely, for large coupons of
b = 5, debtholders have only weak incentives to liquidate early. Since they liquidate late
anyway, the default boundary has only a very weak indirect effect via the liquidation
boundary on the value of equity. The direct effect dominates, and equityholders choose
to default very soon after the cash flow becomes negative (for x very close to a+ b = 6).

In between the extreme values, raising b has two effects on the boundaries. Firstly,
increasing b decreases the incentives of debtholders to liquidate early. This makes it
easier for equityholders to default earlier. But if they default earlier, this in turn tends

15The default and liquidation probabilities can be worked out via standard formulas.
16Note that this tendency to generate large differences between the probabilities of default and liqui-

dation is not limited to our model but seems to be relatively general in models that separate the notions
of default and liquidation. For example Broadie et al. (2007) report a similar finding.
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Figure 3: Default and liquidation boundaries as a function of b

The solid line is x̂∗, and the dashed line is x̄∗B .

to raise the incentives of debtholders to liquidate early, unless the distance between
the boundaries is already very large. This in turn tends to increase the incentives of
debtholders to liquidate early. These overall effects are captured by Figure 3.

We next examine the issue of optimal capital structure in the ex ante sense of Leland
(1994), i.e. if an entrepreneur wants to exit the firm what should be the optimal mix of
debt and equity that he should choose such that it maximizes the value of the proceeds.
In other words, which value of b maximizes firm value?

In Figure 4, we plot the firm value in our model (solid line), and compare this to
the firm value in the case where default implies immediate liquidation (dashed line). We
can see that for small values of b, when the distance between the default and liquidation
boundaries is very small, the lines overlap. For large values of b, when the distance
between default and liquidation is large, the solid line is much lower than the dashed
line. In other words, for large b the firm value is much lower compared to the case
where default and liquidation are synonymous. This is the case because an extra cost of
financial distress is incurred in the states corresponding to the default region. Obviously,
when default implies immediate liquidation, this cost is not incurred, leading to higher
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Figure 4: Optimal capital structure
The solid line is the firm value V in our model, the dashed line is the firm value V under the
assumption that default implies immediate liquidation.

firm values.
Given the agency cost of debt as well as the cost of financial distress the optimal

amount of debt is much lower relative to the case in Leland (1994). The optimal leverage
implied by our model is 40.24% but it is 55.07% for the case where default is tantamount
to liquidation as in Leland (1994). The extra costs associated with debt have an adverse
effect on the value of debt and this explains why the spreads implied by our model are
higher compared to the case where default leads to instantaneous liquidation as can be
seen in Figure 5.

6. Conclusion

In much of the continuous-time debt pricing literature, it has been assumed that
default is tantamount to liquidation, e.g. in the paper of Leland (1994). Noting that
in practice this is not the case, several more recent papers have separated the notions
of default and liquidation, by defining liquidation to result when a firm spends an ex-
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Figure 5: Spreads
The solid line is the spread in our model, the dashed line is the spread under the assumption
that default implies immediate liquidation.

ogenously specified time in default. These papers argue that this feature captures the
essence of Chapter 11.

In this paper, we consider an alternative mechanism that allows a separation between
the notions of default and liquidation: we allow debtholders to liquidate the firm, as long
as equityholders are defaulting on coupon payments, while equity holders decide when
to default, taking into account the effect of their actions on the debtholders’ decision to
liquidate. This assumption is more representative of environments in which debtholders
have a strong influence over the timing of liquidation, like in the case of secured debt, or
creditor-friendly bankruptcy regimes such as the one in the UK.

In our setup, debtholders do not liquidate immediately upon default. Nevertheless,
debtholders have incentives to liquidate too early in the sense that they do not take into
account the full continuation value to all claimants when making their decision. Since
debtholders do not liquidate immediately upon default, shareholders can get away with
some default, and default earlier relative to the case where default implies immediate
liquidation as in the model of Leland (1994). In our model, there are deadweight costs
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associated with default, implying that this early default reduces overall firm value. Both
effects produce an agency cost of debt, which can lead to lower optimal leverage and
higher spreads, as shown in a numerical example.
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Appendix

Appendix A. Valuation

Proof of proposition 1. It is easy to verify that the general solution of the ODE (2) for
the two regions is given by

E1 (x) = A1x
δ +A2x

−γ + (1− τ)
(

x

r − µ
− a+ b

r

)
(A.1)

E2 (x) = A3x
δ +A4x

−γ (A.2)

where A1, A2, A3 and A4 are integration constants. As x→∞, xδ explodes. Thus given
the no bubbles condition (4), A1 must be zero. We know that the value of equity is zero
when x falls below x̄. To determine the values of E1 and E2 note that we have three
unknowns A2, A3 and A4 and three equations given by the boundary conditions (5), (6)
and (7). Solving for the three unknowns, yields the solutions in Eqns. (8) and (9).

Proof of Proposition 2. It is easy to verify that the general solution of the ODE (10) for
the two regions is given

B1(x) = N1x
δ +N2x

−γ +
b

r
(A.3)

B2(x) = N3x
δ +N4x

−γ +
θx

r − µ
− a

r
. (A.4)

where N1, N2, N3 and N4 are integration constants. As x → ∞, xδ explodes. Thus
given the no bubbles condition (12), N1 must be zero. We know that the value of debt
is K when x falls below x̄. To determine the values of B1 and B2 note that we have
three unknowns N2, N3, N4 and three equations given by the boundary conditions (13),
(14) and (15). Solving for the integration constants in terms of x̄, yields the solutions in
Eqns. (16) and (17).

Appendix B. Some intermediate results

We present some lemmas here which allow the proofs in the subsequent sections to
be expressed in a more succinct way.

Lemma 1.
(δ − 1)(1 + γ)r − δγ(r − µ) = 0. (B.1)

Proof. This follows from the quadratic equation that δ and −γ solve. To see this, rewrite
the above equation as

(1− δ + γ)r = δγµ, (B.2)

and insert the definitions of δ,−γ:

{δ,−γ} =
−µ+ 1

2σ
2

σ2
±

√(
µ− 1

2σ
2
)2 + 2σ2r

σ2
. (B.3)

20



Lemma 2.

x̂Z ′ − δZ(x̂)


> 0 for x̂ < a+ b

= 0 for x̂ = a+ b

< 0 for x̂ > a+ b

(B.4)

where Z ′ = dZ(y)
dy = 1+γ

δ+γ
1

r−µ .

Proof. Using the definition of Z(x̂), we can rewrite the expression as

− 1
δ + γ

{
(δ − 1)(1 + γ)

x̂

r − µ
− δγ a+ b

r

}
(B.5)

If x̂ = a+b, the expression will be zero, by Lemma 1. If x̂ > a+b, the expression in curly
brackets will be positive, and the entire expression will be negative, since (δ−1)(1+γ) >
0, r − µ > 0), and by Lemma 1. Similarly If x̂ < a + b, the expression in curly brackets
will be negative, and the whole expression will be positive.

Lemma 3.

Z(y)


> 0 for y > x†,

= 0 for y = x†,

< 0 for y < x†,

(B.6)

where x† = γ
1+γ

r−µ
r (a+ b). Also, x† < a+ b.

Proof. Solve Z(x†) ≡ 0 for x†, and note that Z(y) is increasing in y to obtain the first
statement.. To see that x† < a+ b, note that γ

1+γ
r−µ
r < 1 can be rearranged to produce

−γµ < r. But since −γ solves

−µγ − r +
1
2
σ2γ(γ + 1) = 0, (B.7)

and because σ2, γ > 0, we have that −µγ < r, and hence that x† < a+ b.

Appendix C. Optimal boundaries

Appendix C.1. Debt-value maximizing liquidation boundary
The liquidation boundary x̄∗B that maximizes the value of debt can be worked out

either via direct optimization or via a smooth-pasting condition. Here, we work out this
boundary via direct optimization.

B1(x; x̂, x̄) does not depend on x̄ directly, but only via B2(x̂; x̂, x̄). We can further-
more see that B1(x; x̂, x̄) depends positively on B2(x̂; x̂, x̄). Therefore, picking a x̄ that
maximizes B2(x̂; x̂, x̄) is equivalent to picking the x̄ that maximizes B1(x; x̂, x̄).

B2(x̂; x̂, x̄) is given by

B2(x̂; x̂, x̄) =
θx̂

r − µ
− a

r
− Z(θx̂) +

[
K −

(
θx̄

r − µ
− a

r
− Z(θx̂)

( x̄
x̂

)δ)]( x̂
x̄

)−γ
. (C.1)
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The first derivative of B2(x̂; x̂, x̄) w.r.t. x̄ is

∂B2(x̂)
∂x̄

=
1
x̄

[
0−

(
θx̄

r − µ
− δZ(θx̂)

( x̄
x̂

)δ)]( x̂
x̄

)−γ
+ γ

1
x̄

[
K −

(
θx̄

r − µ
− a

r
− Z(θx̂)

( x̄
x̂

)δ)]( x̂
x̄

)−γ
. (C.2)

The sign of this derivative will be equal to the sign of

fB(x̄) = γK︸︷︷︸
P (x̄)

+ γ
a

r
− (1 + γ)

θx̄

r − µ︸ ︷︷ ︸
Q(x̄)

+ (δ + γ)Z(θx̂)
( x̄
x̂

)δ
︸ ︷︷ ︸

RB(x̄)

. (C.3)

A x̄ that produces a local maximum for B will be given by a root of this function, where
the function needs to cross the x̄-axis from above.

There might be several local maxima. A set of sufficient conditions for single-crossing
from above, below x̂, ensuring a single optimal x̄∗B < x̂, are : (1) fB(0) > 0, (2) fB(x̂) < 0,
and (3) f ′B(x̄) < 0 for x̄ ∈ [0, x̂). This just says that (1) for low enough cash flows, you do
want to liquidate, (2) for high enough cash flows (x ≥ x̂), you do not want to liquidate,
and (3) the higher the cash flow, the less likely you are to want to liquidate.

It is obvious that conditions (1) and (2) are satisfied by a constant K < b
r . To see

that condition (3) is satisfied, take derivatives of f ′B(x̄):

f ′B(x̄) = 0︸︷︷︸
P ′(x̄)

+
(
−(1 + γ)

θx̄

r − µ
1
x̄

)
︸ ︷︷ ︸

Q′(x̄)

+ δ(δ + γ)Z(θx̂)
( x̄
x̂

)δ 1
x̄︸ ︷︷ ︸

R′B(x̄)

. (C.4)

We can now show that f ′B(x̄) = Q′(x̄) + R′B(x̄) < 0 in the relevant interval. Note
initially that Q′(0) + R′B(0) < 0. We note that at the other endpoint x̄ = x̂, Q′(x̂) +
R′B(x̂) ≤ 0 at x̄ = x̂, with equality only for θ = 1, by Lemma 2.

Q(x̄) +RB(x̄) is either strictly concave, or strictly convex in [0, x̂): Q(x̄) is linear. If
Z(θx̂) < 0, then RB(x̄) is strictly decreasing and concave in [0, x̂), if Z(θx̂) > 0, then
RB(x̄) is strictly increasing and convex in [0, x̂).

Since Q′(x̄)+R′B(x̄) is negative at x̄ = 0, and non-positive at x̄ = x̂, and Q(x̄)+RB(x̄)
is either strictly convex or concave, Q(x̄)+RB(x̄) must be monotonic decreasing in [0, x̂).

Effect of x̂ on x̄∗B. We showed that fB(x̄) can be written as P (x̄)+Q(x̄)+RB(x̄), where
x̂ only appears in RB(x̄), and RB(x̄) is given by

RB(x̄) = (δ + γ)Z(θx̂)
( x̄
x̂

)δ
. (C.5)

Taking partial derivatives w.r.t. x̂, we see that

∂RB
∂x̂

=
1
x̂

(δ + γ) (θx̂Z ′ − δZ(θx̂))
( x̄
x̂

)δ
. (C.6)

By Lemma 2, this will be positive for θx̂ < a + b, zero for θx̂ = a + b, and negative for
θx̂ > a+ b. We can restrict attention to values of x̂ ≤ a+b

θ : If x̂ > a+b
θ , this implies that
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there are some levels of the cash flow x < x̂ in the default region such that the residual
cash flow that θx − a debtholders obtain in default is larger than the promised coupon
payment b. In this case, the firm is clearly not defaulting on promised coupon payments,
and an x̂ > a+b

θ is therefore meaningless.
Since x̂ enters fB(x̄) only via RB(x̄), and since ∂fB(x̄)

∂x̄ < 0 in the relevant interval,
we obtain that

dx̄∗B
dx̂

{
> 0 for x̂ < a+b

θ ,

= 0 for x̂ = a+b
θ ,

(C.7)

via the implicit function theorem.

Appendix C.2. Equity-value maximizing default boundary x̂∗

In this subsection, we characterize x̂∗ via consideration of the total derivative of E
w.r.t. x̂,

dE(x; x̂, x̄)
dx̂

=
∂E(x; x̂, x̄)

∂x̂
+
∂E(x; x̂, x̄)

∂x̄

dx̄∗B(x̂)
dx̂

. (C.8)

We initially consider the benchmark case of Leland (1994), in which default equals
liquidation, i.e. x̄ = x̂. In this case, the total derivative above reduces to

dE(x; x̂, x̂)
dx̂

. (C.9)

Setting this to zero produces a first order condition, or (equivalently) a smooth-pasting
condition.

We then consider the more general case where x̄ < x̂. We first derive the partial
derivative of E w.r.t. x̂, and show that it is positive for x̂ < a+ b, zero for x̂ = a+ b, and
negative for x̂ > a+ b. We then show that the partial derivative of E w.r.t x̄ is positive
for x̂ > x† = γ

1+γ
r−µ
r (a + b), zero for x̂ = x†, and negative for x̂ < x†. Combining

this with the results on the derivative of x̄∗B w.r.t. x̂ (see Appendix C.1), this will allow
showing that x† < x̂∗ < a+ b.

Appendix C.2.1. The Leland (1994) benchmark (x̄ = x̂)
Suppose the firm is immediately liquidated when default occurs (x̄ = x̂) This means

that the equity pricing function now is

E(x; x̂, x̂) = (1−τ)
(

x

r − µ
− a+ b

r

)
+
[
0− (1− τ)

(
x̂

r − µ
− a+ b

r

)](x
x̂

)−γ
, (C.10)

as can be shown by solving the corresponding ODE with the appropriate boundary
conditions, or taking appropriate limits of the expressions for the equity pricing functions
as previously derived.

Let x† denote the default boundary, then

x† =
γ

1 + γ

r − µ
r

(a+ b). (C.11)

By Lemma 3, we know that x† < a+ b.17

17The term (1 − τ) x
r−µ here plays the role of a post-tax “asset value” as in Leland (1994). In terms

of the “asset value” the default boundary could be written as (1 − τ) x†

r−µ = γ
1+γ

(1 − τ)a+b
r

, which is

closer to the original formulation in Leland (1994).
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Appendix C.2.2. Partial derivative of E w.r.t. x̂
Now suppose that x̄ < x̂. We show that both ∂E1(x; x̂, x̄)/∂x̂ and ∂E2(x; x̂, x̄)/∂x̂

are both positive for x̂ < a+ b, both zero for x̂ = a+ b, and both negative for x̂ > a+ b,
∀x, x̄.

With some algebra, it can be shown that

∂E1(x; x̂, x̄)
∂x̂

=
1
x̂

(1− τ) {x̂Z ′ − δZ(x̂)}
(

1−
( x̄
x̂

)δ+γ)(x
x̂

)−γ
, (C.12)

where we note that all terms apart from the term in curly brackets are positive.
With some more algebra, it can be shown that

∂E2(x; x̂)
∂x̂

=
1
x̂

(1− τ) {x̂Z ′ − δZ(x̂)}
((x

x̂

)δ
−
( x̄
x̂

)δ (x
x̄

)−γ)
, (C.13)

where we note again that all terms apart from the term in curly brackets are positive.
We can see that the sign of ∂E1(x)/∂x̂ and the sign of ∂E2(x)/∂x̂ is therefore the

same as the sign of x̂Z ′ − δZ(x̂). By Lemma 2, we now can see that the x̂ that sets the
partial derivative of E(x; x̂, x̄) w.r.t. x̂ equal to zero is x̂ = a+ b, for any x̄ < a+ b.

Appendix C.2.3. Partial derivative of E w.r.t. x̄
We can see that E1 depends positively on E2, and that x̄ only affects E2. The sign

of the effect of x̄ on E1 is therefore identically to the sign of the effect of x̄ on E2. We
have

∂E2(x; x̂, x̄)
∂x̄

= −(δ + γ)(1− τ)Z(x̂)
( x̄
x̂

)δ (x
x̄

)−γ 1
x̄
.

By Lemma 3, the sign of this derivative is positive when x̂ < x†, zero when x̂ = x†, and
negative when x̂ > x†.

Appendix C.2.4. First- and second-order-condition
For the total derivative

dE(x; x̂, x̄)
dx̂

=
∂E(x; x̂, x̄)

∂x̂
+
∂E(x; x̂, x̄)

∂x̄

dx̄∗B(x̂)
dx̂

, (C.14)

we know that the first term on the RHS is positive for x̂ < a+b and negative for x̂ > a+b.
Now note that x† < a + b < a+b

θ by Lemma 3 and the fact that 0 < θ < 1. For
the second term, due to the properties of the ∂E/∂x̄ and dx̄∗B/x̂, we know that this is
positive for x̂ < x†, when ∂E/∂x̄ > 0 is positive and dx̄∗B/dx̂ > 0. We know that it is
negative for x† < x̂ < a+b

θ , when ∂E/∂x̄ < 0, and dx̄∗B/dx̂ > 0. We know that it is zero
for x̂ = a+b

θ , when dx̄∗B/dx̂ = 0. We can ignore the situation where x̂ > a+b
θ , because

such an x̂ is meaningless (see section Appendix C.1).
This allows making a statement about the sign of the total derivative:

∂E(x;x̂,x̄)
∂x̂

∂E(x,x̂,x̄)
∂x̄

dx̄∗B
x̂

dE(x;x̂,x̄)
dx̂

x̂ < x† > 0 > 0 > 0
x† < x̂ < a+ b > 0 < 0 ?
a+ b < x̂ < a+b

θ < 0 < 0 < 0
x̂ = a+b

θ < 0 0 < 0

(C.15)
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By continuity, there must be an x̂∗ between x† and a + b at which the total derivative
crosses the x̂-axis from above. At this x̂∗, the value of E will be maximized.

Appendix C.3. Levered-firm-value maximizing liquidation boundary
V1(x; x̂, x̄) does not depend on x̄ directly, but only via V2(x̂; x̂, x̄). We can further-

more see that V1(x; x̂, x̄) depends positively on V2(x̂; x̂, x̄). Therefore, picking a x̄ that
maximizes V2(x̂; x̂, x̄) is equivalent to picking the x̄ that maximizes V1(x; x̂, x̄).

V2(x̂; x̂, x̄) is given by

V2(x̂; x̂, x̄) =
θx̂

r − µ
− a

r
+ Z(x̂)− Z(θx̂)− τZ(x̂)

+
[
K −

(
θx̄

r − µ
− a

r
+ (Z(x̂)− Z(θx̂)− τZ(x̂))

( x̄
x̂

)δ)]( x̂
x̄

)−γ
. (C.16)

The first derivative of V2(x̂; x̂, x̄) w.r.t. x̄ is

∂B2(x̂)
∂x̄

=
1
x̄

[
0−

(
θx̄

r − µ
+ δ (Z(x̂)− Z(θx̂)− τZ(x̂))

( x̄
x̂

)δ)]( x̂
x̄

)−γ
+ γ

1
x̄

[
K −

(
θx̄

r − µ
− a

r
+ (Z(x̂)− Z(θx̂)− τZ(x̂))

( x̄
x̂

)δ)]( x̂
x̄

)−γ
. (C.17)

The sign of this derivative will be equal to the sign of

fV (x̄) = γK︸︷︷︸
P (x̄)

+
(
γ
a

r
− (1 + γ)

θx̄

r − µ

)
︸ ︷︷ ︸

Q(x̄)

+ (δ + γ)Z(θx̂)
( x̄
x̂

)δ
︸ ︷︷ ︸

RB(x̄)

− (δ + γ)(1− τ)Z(x̂)
( x̄
x̂

)δ
︸ ︷︷ ︸

RV (x̄)

= fB(x̄)− (δ + γ)(1− τ)Z(x̂)
( x̄
x̂

)δ
︸ ︷︷ ︸

RV (x̄)

. (C.18)

Note that RV (0) = 0, that RV (x̄) will be positive, convex, and increasing if Z(x̂) > 0,
and negative, concave, and decreasing if Z(x̂) < 0. Since we are subtracting RV (x̄),
this implies that the root of fV (x̄), x̄∗V , will be smaller than the root of fB(x̄), x̄∗B , iff
Z(x̂) > 0, because this will ensure that fV (x̄) < fB(x̄) for the relevant range of x̄. By
Lemma 3, Z(x̂) > 0 exactly when x̂ > x†.

Appendix D. Liquidation payoff K a function of cash flow x

We first discuss why we need to diverge from the typical assumption that the liqui-
dation payoff is a fraction of the “asset value” of the firm. (This assumption is made
e.g. by Leland (1994), and repeated in much of the literature.) Even though we cannot
adopt this assumption, we can allow K to be a function of the cash flow x, but with
some restrictions on this function. We subsequently discuss these restrictions.
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Comparison to a standard assumption. A standard assumption in the literature, see e.g.
Leland (1994), is that the liquidation payoff is a fraction of the “asset value” of the firm.
We show here that in the context of this assumption, it is difficult to talk meaningfully
about optimal liquidation. Consider an unlevered firm, with a (traded) post-tax asset
value ω, a fraction β of which is paid out as a flow to the owner. Suppose the evolution
of ω under Q is described by the following SDE:

dω(t) = (r − β)ω(t)dt+ σω(t)dW̃ (t) (D.1)

(ω plays the role that (1−τ) x
r−µ plays in our context.) Suppose that the firm is liquidated

once ω hits ω̄, and that the liquidation payoff is (1− λ)ω̄, where 0 < λ < 1. What is the
value v(ω) of the unlevered firm?

The pricing ODE will be

1
2
σ2ω2v′′(ω) + (r − β)ωv′(ω)− rv(ω) + βω = 0, (D.2)

with boundary conditions

lim
ω→∞

v(ω) = ω (D.3)

v(ω̄) = (1− λ)ω̄. (D.4)

The solution is

v(ω; ω̄) = ω + [(1− λ)ω̄ − ω̄]
(ω
ω̄

)−γ
= ω − λ

(ω
ω̄

)−γ
. (D.5)

This is essentially the equation derived by Leland (1994), except that here, the coupon
payment set to zero (this is an unlevered firm).

What is the optimal liquidation boundary in this case? By direct differentiation, it
can be seen that the first derivative of v w.r.t. ω̄ is

−(1 + γ)λ
(ω
ω̄

)−γ
. (D.6)

Note that since λ > 0, this is always negative. This means that it is never optimal
to liquidate (this is of course also obvious by direct inspection of the pricing function).
Clearly, with this type of corner solution, it is hard to discuss optimal liquidation.

K as a function of cash flow x. Let the liquidation payoff to debt be a function K(x̄)
of the cash flow at liquidation, x̄. This means that the last boundary condition in the
derivation of the prices needs to be modified in the obvious way. All resulting pricing
formulas are essentially the same, with the constant K now replaced with the function
K(x̄) everywhere.

We can repeat the derivations above to obtain new implicit functions fB(x̄) , fV (x̄)
that determine the optimal liquidation boundaries. We have

fB(x̄) = x̄K ′(x̄) + γK(x̄)︸ ︷︷ ︸
P (x̄)

+ γ
a

r
− (1 + γ)

θx̄

r − µ︸ ︷︷ ︸
Q(x̄)

+ (δ + γ)Z(θx̂)
( x̄
x̂

)δ
︸ ︷︷ ︸

RB(x̄)

, (D.7)
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and

fV (x̄) = x̄K ′(x̄) + γK(x̄)︸ ︷︷ ︸
P (x̄)

+
(
γ
a

r
− (1 + γ)

θx̄

r − µ

)
︸ ︷︷ ︸

Q(x̄)

+ (δ + γ)Z(θx̂)
( x̄
x̂

)δ
︸ ︷︷ ︸

RB(x̄)

− (δ + γ)(1− τ)Z(x̂)
( x̄
x̂

)δ
︸ ︷︷ ︸

RV (x̄)

= fB(x̄)− (δ + γ)(1− τ)Z(x̂)
( x̄
x̂

)δ
︸ ︷︷ ︸

RV (x̄)

. (D.8)

There might be several local maxima, each associated with a root of these functions
where the function crosses the x̄-axis from above. E.g. in the case of fB(x̄), a set of
sufficient conditions for single-crossing from above, below x̂, ensuring a single optimal
x̄∗B still is: (1) fB(0) > 0, (2) fB(x̂) < 0, and (3) f ′B(x̄) < 0 for x̄ ∈ [0, x̂). This just says
that (1) for low enough cash flows, you do want to liquidate, (2) for high enough cash
flows (x ≥ x̂), you do not want to liquidate, and (3) the higher the cash flow, the less
likely you are to want to liquidate. These conditions implicitly put restrictions on the
first and second derivatives of the function K(x̄).

We now show how these conditions relate to similar conditions that one would have
to impose for an optimal liquidation boundary x̄∗U to exist for an unlevered firm. Let U
denote the value of the unlevered firm. The holder of the unlevered firm receives cash
flows (1− τ)(x− a) until the firm is liquidated at cash flow x̄, when she receives K(x̄).
The pricing ODE is

1
2
σ2x2U ′′(x) + µxU ′(x)− rU(x) + (1− τ)(x− a) = 0, (D.9)

and the boundary conditions are

lim
x→∞

U = (1− τ)
(

x

r − µ
− a

r

)
(D.10)

U(x̄) = K(x̄). (D.11)

Solving, one obtains

U(x; x̄) = (1− τ)
(

x

r − µ
− a

r

)
+
[
K(x̄)−

(
x̄

r − µ
− a

r

)](x
x̄

)−γ
. (D.12)

By direct differentiation, we find that the sign of ∂U/∂x̄ is equal to the sign of

fU (x̄) = x̄K ′(x̄) + γK(x̄)︸ ︷︷ ︸
P (x̄)

+ (1− τ)
(
γ
a

r
− (1 + γ)

x̄

r − µ

)
︸ ︷︷ ︸

QU (x̄)

. (D.13)

A x̄∗U that produces a local maximum for U will be given by a root of this function,
where the function needs to cross the x̄-axis from above.
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Comparing fU (x̄) with fV (x̄) and fB(x̄), we can see that they are very similar. Rea-
sonable conditions on K(x̄) that ensure the existence and uniqueness of an optimal liq-
uidation boundary x̄∗U that maximizes the value of the unlevered firm imply that (1) and
(3) are going to be satisfied for fB(x̄), and hence also fV (x̄). An additional assumption
on K(x̄) is then still needed to ensure that x̄B < x̂. This would be the analogue of the
assumption K < b

r , i.e. that debt is risky.
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