Deposit Insurance and Money Market Freezes

Max Bruche and Javier Suárez

CEMFI

Research Question

What are the causes and consequences of a money market freeze?

Deposit Insurance and Money Market Freezes

Bruche and Suárez

The basic idea

- Money Markets (MM) facilitate the reallocation of funds from banks which can raise a lot of deposits to banks that cannot raise a lot of deposits
- In the presence of deposit insurance (DI), an increase in the risk of bank failure can disrupt MM and cause a freeze, with consequences of the real economy.

Key ingredients

- 1. Interregional savings/ investment imbalances:
 - There are regions. They have similar investment opportunities, but heterogeneous endowments of savings.
 - Labor markets and retail financial markets are regionally segmented.
 - \Rightarrow Banks use MM to borrow from and lend to each other (i.e. to reallocate savings across regions)

Key ingredients

- 1. Interregional savings/ investment imbalances:
 - There are regions. They have similar investment opportunities, but heterogeneous endowments of savings.
 - Labor markets and retail financial markets are regionally segmented.
 - \Rightarrow Banks use MM to borrow from and lend to each other (i.e. to reallocate savings across regions)
- 2. Deposits are insured.

Key ingredients

- 1. Interregional savings/ investment imbalances:
 - There are regions. They have similar investment opportunities, but heterogeneous endowments of savings.
 - Labor markets and retail financial markets are regionally segmented.
 - \Rightarrow Banks use MM to borrow from and lend to each other (i.e. to reallocate savings across regions)
- 2. Deposits are insured.
- 3. Crisis = exogenous increase in counterparty risk (solvency shock to firms \rightarrow banks).
 - Banks that lend in MM remain financed at cheap deposit rates, banks that borrow in MM have to pay high MM spreads.
 - Allocation of capital across regions becomes asymmetric, spreads of 200bp \to reductions of $\approx 75\%$ in MM volumes.

Related literature

Other papers that talk about causes and consequences of financial market freezes:

Related literature

Other papers that talk about causes and consequences of financial market freezes:

- Bhattacharya and Gale (1987) tradition: Heider-Hoerova-Holthausen (09), Freixas-Jorge (08), Allen-Carletti-Gale (08)
- Other approaches: Huang-Ratnovski (08), Brunnermeier-Pedersen (09), Acharya-Gromb-Yorulmazer (08), Diamond-Rajan (09)

Related literature

Other papers that talk about causes and consequences of financial market freezes:

- Bhattacharya and Gale (1987) tradition: Heider-Hoerova-Holthausen (09), Freixas-Jorge (08), Allen-Carletti-Gale (08)
- Other approaches: Huang-Ratnovski (08), Brunnermeier-Pedersen (09), Acharya-Gromb-Yorulmazer (08), Diamond-Rajan (09)

Contribution: DI as a key latent distortion, more macro angle.

The Model: Overview

- Perfect competition, t=0,1, $j \in [0,1]$ regions, single good per period.
- Risk-neutral agents. In each region j:
 - a representative household
 - a (continuum of) firms
 - a representative bank
- a money market

A representative household

A representative household (in each j) with

• Exogenous initial savings:

 $\begin{cases} S_H & \text{ in fraction } \pi \text{ of high-savings regions} \\ S_L < S_H & \text{ in fraction } 1 - \pi \text{ of low-savings regions} \end{cases}$

- Inelastic labor supply $n_j = 1$ at (pre-paid) wage w_j
- the only means of transferring wealth being
 - insured regional deposits d_j : pay (expected) rate r_{dj} , promised rate $r_{dj} + s_{dj}$.
 - Bank equity e_j : residual claim.

A continuum of firms

(firms owned by penniless *entrepreneurs*)

• CRS technology

$$(k_i, n_i) \rightarrow \widetilde{z}_{ij}[AF(k_i, n_i) + (1 - \delta)k_i] + (1 - \widetilde{z}_{ij})(1 - \lambda)k_i$$

where: $\widetilde{z}_{ij} \in \{0, 1\}$ indicates success or failure $F(k_i, n_i) = k_i^{\alpha} n_i^{1-\alpha}$, with $\alpha \in (0, 1)$ δ, λ are depreciation rates

• Regional failure rate is

$$x_j = \begin{cases} 1 & \text{with prob. } \varepsilon & \text{(all firms fail at once)} \\ p & \text{with prob. } 1 - \varepsilon & \text{(iid failures with pr } p) \end{cases}$$

- The " $x_j = 1$ events" are independent across regions.
- Firms pay in advance for (k_i, n_i) using a bank loan

Obtain
$$l_{ij} = k_{ij} + w_j n_{ij} \longrightarrow \text{Pay } \min\{R_{ij}, (1-\lambda)k_{ij}\}$$

A representative bank

(bank owned by coalition of households)

Assets		Liabilities		
l_j	Loans	Deposits	d_j	
a_j	Net MM assets	Equity	e_j	
[<i>a_j</i> : n	et lending (>0) or	net borrowing	(<0)]	

- Perfect competition (free entry)
- Firm-bank contract sets $(k_{ij}, n_{ij}, l_{ij}, R_{ij})$ By virtue of competition:
 - Entrepreneur's surplus is maximized
 - Bank breaks even: $\max E[\text{final net worth}] = (1 + r_{dj})e_j$

The money market & the government

- MM liabilities = unsecured debt, junior to deposit liabilities.
- MM lending pays (expected) rate r, promised rate r + s.
- The government
 - grants / does not grant DI.
 - imposes diversification of lending across regional firms
 - imposes diversification of MM lending across banks
 - imposes minimum capital requirement: $e_j \ge \gamma l_j$

Parametric restrictions

- A1 The capital requirement is low enough to guarantee that when all firms in a region fail $(x_j = 1)$, the corresponding regional bank goes bankrupt.
- A2 Deposit liabilities in low-savings regions are large enough for the recoveries of MM lenders to be zero.
 - \Rightarrow spread is flat:

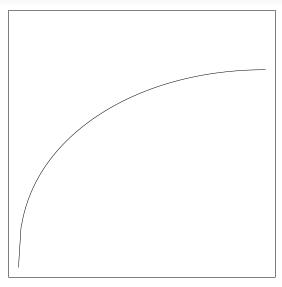
$$(1-\varepsilon)(1+r+s) = 1+r$$

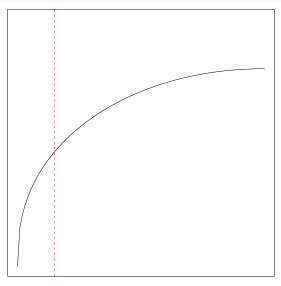
- Banks have limited liability.
- ⇒ bankers don't care about size of losses in state in which bank is bankrupt.

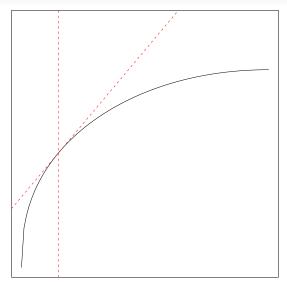
- Banks have limited liability.
- ⇒ bankers don't care about size of losses in state in which bank is bankrupt.
 - "Fair pricing": market interest rates reflect size of losses in state in which bank is bankrupt
- \Rightarrow banks *internalize* size of losses in state in which bank is bankrupt.

- Banks have limited liability.
- ⇒ bankers don't care about size of losses in state in which bank is bankrupt.
 - "Fair pricing": market interest rates reflect size of losses in state in which bank is bankrupt
- \Rightarrow banks *internalize* size of losses in state in which bank is bankrupt.
- ⇒ the *effective* funding rate that bankers take into account when making decisions is the *expected rate of return* required by investors.

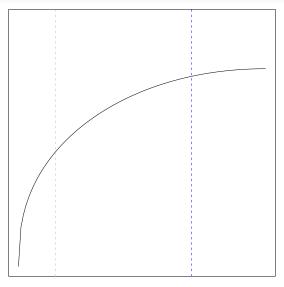
- Banks have limited liability.
- ⇒ bankers don't care about size of losses in state in which bank is bankrupt.
 - "Fair pricing": market interest rates reflect size of losses in state in which bank is bankrupt
- \Rightarrow banks *internalize* size of losses in state in which bank is bankrupt.
- ⇒ the *effective* funding rate that bankers take into account when making decisions is the *expected rate of return* required by investors.
 - For MM borrower and MM lender, if $r_d > r$, banks prefer MM funding, deposits not used. If $r_d < r$, could increase deposits and MM lending without limit, make profits.
 - Banks are indifferent between deposits and equity.

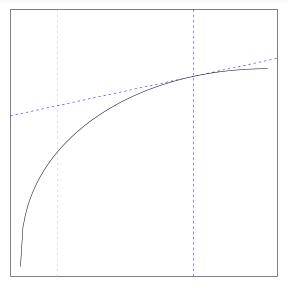


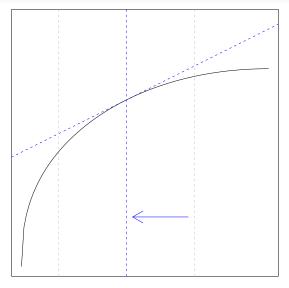

Introduction

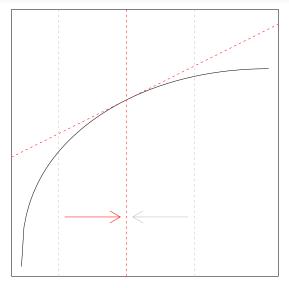

Marginal productivity of k is equalized across regions

Deposit Insurance and Money Market Freezes

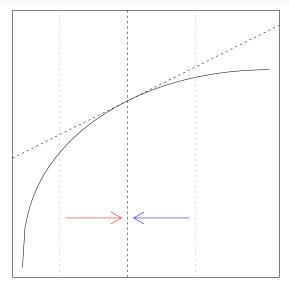

Bruche and Suárez



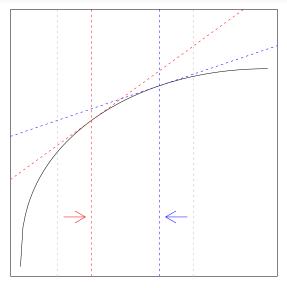



Marginal productivity of \boldsymbol{k} is equalized across regions

Marginal productivity of \boldsymbol{k} is equalized across regions


- Banks have limited liability.
- ⇒ bankers don't care about size of losses in state in which bank is bankrupt.

- Banks have limited liability.
- ⇒ bankers don't care about size of losses in state in which bank is bankrupt.
 - There is no "fair pricing" of deposits.
- \Rightarrow bankers do not fully internalize size of losses in state in which bank is bankrupt.


- Banks have limited liability.
- ⇒ bankers don't care about size of losses in state in which bank is bankrupt.
 - There is no "fair pricing" of deposits.
- \Rightarrow bankers do not fully internalize size of losses in state in which bank is bankrupt.
- ⇒ the effective funding rates are *not* the *expected rate of return* required by investors.

- Banks have limited liability.
- ⇒ bankers don't care about size of losses in state in which bank is bankrupt.
 - There is no "fair pricing" of deposits.
- \Rightarrow bankers do not fully internalize size of losses in state in which bank is bankrupt.
- ⇒ the effective funding rates are *not* the *expected rate of return* required by investors.
 - For MM borrower, $r_d = r + s$, for MM lender, $r_d = r$ (otherwise, prefer one source of funding).
 - Banks prefer cheaper insured deposits over equity.

Marginal productivity of \boldsymbol{k} is not equalized across regions

Table 1: Calibration (*)

[...] Panel B. Calibration targets

Variables		Values
Macroeconomic:	30%	
	Pre-crisis MM rate	4%
	Labor share	70%
	Capital / GDP ratio	3
Financial:	MM spread	0%-2%
	Loan def. prob.	3%-5%
	Loan LGD	45%

parameters

.

Table 2: The effects of counterparty risk

		Prob	Probability of bank failure ($arepsilon$)		
		0%	1%	2%	3%
Deposit rates	Н	4.00	3.43	2.92	2.62
	L	4.00	4.48	5.02	5.33
MM / base GDP	Aggr.	31.86	19.29	6.93	0.00
Loan rates	Н	5.56	5.04	4.59	4.36
	L	5.56	6.15	6.82	7.24
DI costs / base GDP	Н	0.00	1.70	3.53	5.41
	L	0.00	1.14	2.63	4.24
	Aggr.	0.00	1.42	3.08	4.83

		Pro	Probability of bank failure ($arepsilon$)			
		1%	2%	3%		
Capital	Н	7.89	15.65	20.00		
	L	-7.89	-15.65	-20.00		
GDP	Н	1.28	2.37	2.45		
	L	-3.41	-6.88	-9.28		
	Aggr.	-1.06	-2.25	-3.41		

Demand externalities (*)

- Effects of asymmetric allocation of k on output are small.
- Trade linkages? Demand externalities?
- Here: Reduced-form: Make A a CES aggregator of the levels of activity in the various regions:

$$A = \left[\int_0^1 k_j^{\rho} dj\right]^{\frac{\tau}{\rho}}$$

Table 3: Amplification via demand externalities (*)

		Prob	Probability of bank failure (ε)		
		0%	1%	2%	3%
Deposit rates	Н	4.00	3.36	2.64	2.23
	L	4.00	4.40	4.73	4.82
MM / base GDP	Aggr.	31.86	19.20	6.22	0.00
Loan rates	Н	5.56	4.96	4.29	3.95
	L	5.56	6.07	6.51	6.70
DI costs / base GDP	Н	0.00	1.69	3.48	5.27
	L	0.00	1.13	2.60	4.12
	Aggr.	0.00	1.41	3.04	4.70

		Pro	Probability of bank failure ($arepsilon$)			
		1%	2%	3%		
Capital	Н	7.95	16.10	20.00		
	L	-7.95	-16.10	-20.00		
GDP	Н	0.51	-0.67	-2.30		
	L	-4.18	-9.89	-13.49		
	Aggr.	-1.84	-5.28	-7.89		

Deposit Insurance and Money Market Freezes

Asymmetry of costs of insured v. uninsured funding

- Could eliminate DI, but we cannot provide full welfare analysis here.
- Could charge "fair" DI premia, but "formula" might be hard.
- Could insure MM funding \rightarrow fixed-rate full-allotment lending.

Table 4: Effects of subsidizing c.p. risk (*)

		Prob. of bank failure ($arepsilon$)		
		1%	2%	3%
Cost of subs. / base GDP	Aggr.	0.33	0.66	0.99
Reduct. in DI costs / base GDP				
– Without dem. ext.	Н	0.08	0.30	0.57
	L	0.18	0.72	1.39
	Aggr.	0.13	0.51	0.98
– With dem. ext.	Н	0.07	0.25	0.43
	L	0.17	0.69	1.27
	Aggr.	0.12	0.47	0.85
Improvm. in GDP / base GDP				
– Without dem. ext.	Н	-2.28	-4.37	-5.45
	L	2.41	4.88	6.28
	Aggr.	0.06	0.25	0.41
– With dem. ext.	Н	-1.51	-1.33	-0.70
	L	3.18	7.89	10.49
	Aggr.	0.84	3.28	4.89

Conclusions

- The model highlights
 - the role of money markets in allocating capital across banks
 - the distortions arising from DI when the risk of bank failure become significant.
- Modest rise in counterparty risk can make MMs freeze, causing severe distortions to allocation of credit
- With demand externalities, the implications for aggregate output can be large
- Absorption or subsidization of counterparty risk by the government can reduce the effects of the distortion

Appendix

Appendix

Deposit Insurance and Money Market Freezes

Bruche and Suárez

Appendix

Panel A. Parameter values

Parameters			Value
Savings:	Measure of high-savings regions	π	0.5
	Savings asymmetry	$\mu \equiv \pi S_H / \bar{S}$	0.6
Techn.:	Capital elasticity parameter in F	α	0.3
	Depreciation rate if success	δ	4.5%
	Depreciation rate if failure	λ	35%
Risk:	Probability of idiosyncratic firm failure	p	3%
	Probability of bank failure	ε	0%-2%
Frict.:	Capital requirement	γ	8%

PC without DI

PC borrower:

 $(1-\varepsilon)[(1-p)R+p(1-\lambda)k-(1+r+s)(l-d-e)-(1+r_d+s_d)d]\geq (1+r_d)e.$ PC lender:

$$\begin{split} &(1-\varepsilon)[(1-p)R+p(1-\lambda)k+(1+r)(d+e-l)-(1+r_d+s_d)d] \geq (1+r_d)e. \\ \Rightarrow \text{ the same PC:} \end{split}$$

$$\begin{split} (1-\varepsilon)[(1-p)R+p(1-\lambda)k]+\varepsilon(1-\lambda)k-(1+r)(l-d-e)-(1+r_d)d\\ \geq (1+r_d)e. \end{split}$$

Deposit Insurance and Money Market Freezes

PC with DI

PC borrower:

$$\begin{array}{l} (1-\varepsilon)[(1-p)R+p(1-\lambda)k-(1+r+s)(l-d-e)-(1+r_d+s_d)d] \geq (1+r_d)e. \\ (1) \\ \mbox{PC lender:} \end{array}$$

$$(1-\varepsilon)[(1-p)R+p(1-\lambda)k+(1+r)(d+e-l)-(1+r_d+s_d)d] \ge (1+r_d)e.$$
(2)
$$\Rightarrow \text{ different PC:}$$

$$(1-\varepsilon)[(1-p)R+p(1-\lambda)k-(1+r+s\xi)(l-d-e)-(1+r_d)d] \ge (1+r_d)e,$$
(3)